Curvature Functionals, Optimal Metrics, and the Differential Topology of 4-Manifolds
نویسندگان
چکیده
This paper investigates the question of which smooth compact 4-manifolds admit Riemannian metrics that minimize the L2-norm of the curvature tensor. Metrics with this property are called optimal; Einstein metrics and scalar-flat anti-self-dual metrics provide us with two interesting classes of examples. Using twistor methods, optimal metrics of the second type are constructed on the connected sums kCP2 for k > 5. However, related constructions also show that large classes of simply connected 4-manifolds do not admit any optimal metrics at all. Interestingly, the difference between existence and non-existence turns out to delicately depend on one’s choice of smooth structure; there are smooth 4-manifolds which carry optimal metrics, but which are homeomorphic to infinitely many distinct smooth 4-manifolds on which no optimal metric exists.
منابع مشابه
Scalar Curvature and Geometrization Conjectures for 3-Manifolds
We first summarize very briefly the topology of 3-manifolds and the approach of Thurston towards their geometrization. After discussing some general properties of curvature functionals on the space of metrics, we formulate and discuss three conjectures that imply Thurston’s Geometrization Conjecture for closed oriented 3-manifolds. The final two sections present evidence for the validity of the...
متن کاملOn Stretch curvature of Finsler manifolds
In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied. In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...
متن کاملWarped product and quasi-Einstein metrics
Warped products provide a rich class of physically significant geometric objects. Warped product construction is an important method to produce a new metric with a base manifold and a fibre. We construct compact base manifolds with a positive scalar curvature which do not admit any non-trivial quasi-Einstein warped product, and non compact complete base manifolds which do not admit any non-triv...
متن کاملSpin Manifolds, Einstein Metrics, and Differential Topology
We show that there exist smooth, simply connected, fourdimensional spin manifolds which do not admit Einstein metrics, but nonetheless satisfy the strict Hitchin-Thorpe inequality. Our construction makes use of the Bauer/Furuta cohomotopy refinement of the Seiberg-Witten invariant [3, 9], in conjunction with curvature estimates previously proved by the second author [17]. These methods also all...
متن کاملTotally umbilical radical transversal lightlike hypersurfaces of Kähler-Norden manifolds of constant totally real sectional curvatures
In this paper we study curvature properties of semi - symmetric type of totally umbilical radical transversal lightlike hypersurfaces $(M,g)$ and $(M,widetilde g)$ of a K"ahler-Norden manifold $(overline M,overline J,overline g,overline { widetilde g})$ of constant totally real sectional curvatures $overline nu$ and $overline {widetilde nu}$ ($g$ and $widetilde g$ are the induced metrics on $M$...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004